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Abstract. Electronic energy flow in an isolated molecular system involves coupling between 

the electronic and nuclear subsystems, and the coupled system evolves to a statistical mixture 

of pure states.  In semiclassical theories, nuclear motion is treated using classical mechanics, 

and electronic motion is treated as an open quantal system coupled to a “bath” of nuclear 

coordinates.  We have previously shown how this can be simulated by a time-dependent 

Schrödinger equation with coherent switching and decay of mixing, where the decay of 

mixing terms model the dissipative effect of the environment on the electronic subdynamics 

(i.e., on the reduced dynamics of the electronic subsystem).  In the present paper we 

reformulate the problem as a Liouville-von Neumann equation of motion (i.e., we propagate 

the density matrix of the electronic subsystem), and we introduce the assumption of first-

order linear decay.  We specifically examine the cases of equal relaxation times for both 

longitudinal (i.e., population) decay and transverse decay (i.e., dephasing) and of longitudinal 

relaxation only, yielding the linear decay of mixing (LDM) and the population-driven decay 

of mixing (PDDM) schemes, respectively.  Because we do not generally know the basis in 

which coherence decays, that is, the pointer basis, we judge the semiclassical methods in part 

by their ability to give good results in both the adiabatic and diabatic bases.  The accuracy in 

the prediction of physical observables is shown to be robust not only with respect to basis, 

but also with respect to the way in which demixing is incorporated into the master equation 

for the density matrix.  The success of the PDDM scheme is particularly interesting because 

it incorporates the least amount of decoherence (i.e., the PDDM scheme is the most similar of 

the methods discussed to the fully coherent semiclassical Ehrenfest method).  For both the 

new and previous decay of mixing schemes, four kinds of decoherent state switching 
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algorithms are analyzed and compared to one another: natural switching (NS), self-consistent 

switching (SCS), coherent switching (CS), and globally coherent switching (GCS).  The CS 

formulations is an example of a non-Markovian method, in which the system retains some 

memory of its history, whereas the GCS, SCS and NS schemes are Markovian (time local).  

These methods are tested against accurate quantum mechanical results using 17 

multidimensional atom-diatom test cases.  The test cases include avoided crossings, conical 

interactions, and systems with noncrossing diabatic surfaces.  The CS switching algorithm, in 

which the state populations are controlled by a coherent stochastic algorithm for each 

complete passage through a strong interaction region, but successive strong-interaction 

regions are not mutually coherent, is shown to be the most accurate of the switching 

algorithms tested for the LDM and PDDM methods as well as for the previous decay of 

mixing methods, which are reformulated here as Liouville-von Neumann equations with 

nonlinear decay of mixing (NLDM).  We also demonstrate that one variant of the PDDM 

method with CS performs almost equally well in the adiabatic and diabatic representations, 

which is a difficult objective for semiclassical methods.  These decay of mixing methods 

provide powerful mixed quantum-classical methods for modeling non-Born-Oppenheimer 

polyatomic dynamics including photochemistry, charge-transfer, and other electronically 

nonadiabatic processes. 
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 I.  INTRODUCTION 

 The Born-Oppenheimer approximation assumes that the relatively slow motion of 

nuclei can be separated from the faster electronic motion, and thus the nuclei effectively 

move on a single electronically adiabatic potential energy surface.  Due to the prohibitive 

computational expense of using quantum mechanics to treat the nuclear motion of large 

systems (say, for systems larger than four atoms), molecular dynamics (MD) simulations 

often treat the nuclear motion using classical mechanics.  The combination of quantal 

electronic motion and classical nuclear motion for such a Born-Oppenheimer process leads to 

the classical trajectory1 or quasiclassical trajectory2 (QCT) method when applied to gas-

phase systems or the molecular dynamics (MD) method3 when applied to condensed-phase 

systems.  However, when the system has low-lying excited electronic states, the Born-

Oppenheimer approximation may break down, and nonadiabatic transitions may couple 

nuclear motion in the various low-lying electronic states.  In order to extend the QCT and 

MD methods to treat nonadiabatic transitions caused by breakdown of the Born-

Oppenheimer approximation, two new issues arise, namely that nuclear motion is governed 

by two or more potential energy surfaces and that these surfaces are coupled, leading to non-

Born-Oppenheimer trajectories. Various mixed quantum-classical methods have been 

proposed to incorporate electronically nonadiabatic dynamics,4 and in this article we call 

these semiclassical methods because some degrees of freedom (the electronic ones) are 

quantal, and others (the nuclear ones) are classical. 

 A general problem faced by all mixed quantum-classical approaches is the problem of 

how to couple classical nuclear motion to quantal electronic motion to best simulate the true 

overall dynamics, which is of course fully quantal.  If the goal is to calculate detailed 

quantum state-to-state transitions, then one must include all phase and interference effects, 

which is difficult in an approximate calculation; however, most experimentally interesting 

observables in practical problems involving photochemistry are highly averaged quantities in 

which much of the phase and interference information is washed out.  In most applications 

the goal is to develop general methods to calculate these averaged quantities, such as total 

quenching cross sections or rate constants for photo-induced reactions.  For this reason it is 
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sufficient to consider predicting the diagonal elements of the density matrix5 because they 

control the final state populations.  There is, however, a second reason to formulate the 

problem in terms of the density matrix, namely that the electronic degrees of freedom 

constitute a subsystem, and the Liouville-von Neumann equation of  motion6–16 (also called 

the quantum Liouville equation) provides a theoretical framework for propagating the density 

matrix of a subsystem.  In particular it provides a widely accepted language for 

characterizing relaxation and decoherence (also described as dissipation and dephasing).  

Relaxation and decoherence of the electronic degrees of freedom in a “bath” of nuclear 

degrees of freedom can be and have been described in wave function language15,17,18 but in 

the present article, following earlier work,8–16 we use density matrix language. 

 In formulating the semiclassical aspect of the problem, we limit our attention to 

methods that involve independent trajectories since coupling trajectories together, although it 

may better simulate a wave packet,19 raises unsolved questions of computational efficiency 

and how best to treat the coupling.  Independent-trajectory methods may be classified into 

two main categories: (1) trajectory surface hopping (TSH) methods20–33 in which the 

classical motion at any given time is governed by one or another surface (each associated 

with a given electronic state in a given representation), and this motion is interrupted by hops 

(jumps, switches) between surfaces and/or bifurcations into two or more independent 

daughter trajectories (on different surfaces), each of which can further hop or bifurcate; and 

(2) self-consistent potential (SCP) methods15–18,34–48  in which trajectories are governed by 

a weighted averaged of the coupled potential surfaces, where the weight change continuously 

as a function of time.  The most consistent of the TSH methods are based on Tully’s fewest 

switches (TFS) criterion,24 which attempts to make the electronic probability distribution 

averaged over an ensemble of trajectories equal to the probability distribution computed from 

the electronic density matrix.  The most straightforward of the SCP methods is the 

semiclassical Ehrenfest (SE) method.40 

 Some TSH methods are reasonably accurate for treating classical allowed transitions, 

where energy conservation is achieved during hops or in daughter trajectories by adjusting a 

component of the nuclear momentum (the direction of this component is called hopping 
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vector).  In many cases, though, the algorithm may call for a hop that is not allowed by 

conservation of energy or momentum.  Such a hop is called frustrated hop, and in general 

frustrated hops cause the number of trajectories propagating on each surface to become 

inconsistent with the electronic density matrix.  Although the fewest-switches with time 

uncertainty (FSTU) method31 and the later FSTU�V  method33 have been reasonably 

successful at producing accurate results despite these difficulties, they occasionally show a 

strong dependence on the representation used (adiabatic or diabatic), and even when the 

empirically best representation is used they have been found to be less accurate than the best 

of the SCP methods described below. 

 The SE method involves mean-field trajectories, and it can sometimes produce 

accurate electronic transition probabilities.  However, the SE method (even if or when it 

gives accurate average results) cannot, in general, give accurate final energy distributions 

because the electronic and translational energies of each trajectory correspond to average 

energies whereas the correct physical observables, due to decoherence, correspond to a 

statistical mixture of the discrete, allowed final values.  In a semiclassical method where 

quantum mechanics is used for the electronic motion and classical mechanics is used for the 

nuclear motion, the electronic density matrix decoheres due to the “bath” of nuclear 

coordinates (even for small, isolated, gas-phase systems).  The realization that this effect 

must be introduced explicitly into the SE equation is the motivation for the development of 

the decay of mixing (DM) methods. In order to include this decoherence into the mean field 

approaches, the first DM method, called the natural decay of mixing (NDM) method,18 

replaced the mean-field state with a decohering one by adding decay into the coupled-states 

electronic Schrödinger equation.  A DM trajectory behaves like the mean-field trajectory 

when the system is in a region of strongly interacting electronic states, but it gradually 

decoheres into a single-state trajectory when system leaves the strong interaction 

region.15,16,18  As decoherence is built into the quantum electronic motion, it naturally 

induces an extra force acting back on the classical nuclear motion. This force is called the 

decoherent force, and its magnitude is determined by the requirement of energy conservation.  
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The DM formalism has been shown to provide a more accurate description of non-Born-

Oppenheimer dynamics than either the SE or the surface-hopping formalism.15,16,18   

 The state to which the decohering state is locally decaying is called the decoherent 

state.  This could be an adiabatic or diabatic state; the basis in which physical decoherence 

occurs is called the pointer basis49 or the environmentally induced superselection basis.50  

Instead of describing nonadiabatic transitions as trajectories hopping discontinuously and 

stochastically from one potential energy surface to another, as in trajectory surface hopping 

methods, DM trajectories evolve continuously on a weighted average of the potential energy 

surfaces, with continuously evolving weights that tend to unity on one surface (in the 

adiabatic or diabatic basis) and zero on all the others.  The decoherent state, rather than the 

propagation surface, is switched.15,16,18  The result is similar to allowing nonvertical hops.  

The NDM method18 was the first implementation of the DM formalism, and in the NDM 

method the switching occurs stochastically according to the TFS algorithm using the 

decohering electronic density.  This was shown to be more accurate than the TFS surface 

hopping method.  The NDM approach has nevertheless been further improved as described 

below. 

  In the original formulation of the NDM method, the switching probability artificially 

favors decoherence to the local decoherent state.  This means that the system either 

decoheres too fast or the switching probability balances coherence with decoherence 

inappropriately.  With this problem in mind, we developed the self-consistent decay of 

mixing (SCDM) method15 in which we do not consider the contribution to population 

transfer due to decay when we compute the switching probabilities.  This improves accuracy 

of the DM method.  

 Subsequent analysis led to an even more accurate DM method in which the switching 

probability is governed by the coherent part of the coupled-states electronic Schrödinger 

equation over each pass through a strong interaction region.  Globally coherent switching 

(i.e., coherent switching over the entire trajectory) is, however, not the best algorithm for 

simulating full quantum dynamics.  The importance of decoherence between successive 

passages through strong interaction regions was demonstrated most clearly by Thachuk et 
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al.42 in a low-dimensionality problem, namely the evolution of a two-state diatomic molecule 

in a strong electromagnetic field; their discussion makes it clear that the combination of 

coherent evolution through a strong interaction region and decoherence between such 

passages is a more realistic model of quantum dynamics than is completely coherent 

dynamics and that maintaining coherence over an entire trajectory may lead to significant 

errors.  One semiclassical method that was developed with this kind of consideration as a 

motivation is the surface hopping method of Parlant and Gislason,22,23 in which each strong 

interaction region is treated coherently, and then electronic wave functions are reinitialized 

before encountering the next strong interaction region.  This method, like all TSH methods, 

models one aspect of decoherence by the hopping events themselves.  However, our tests of 

Parlant-Gislason TSH method showed16 that it is less accurate than the fewest-switches TSH 

method.  We used a similar but different strategy to incorporate decoherence between strong-

interaction regions and coherence within strong-interaction regions in the DM method.  In 

particular, we modified the DM method to calculate switching probabilities using fully 

coherent electronic wave functions, and we re-set the coherent wave functions to the 

decohering ones between strong-interaction regions (rather than reinitializing them).  We call 

this method the coherent switching decay of mixing (CSDM) method, and we found that it is 

more accurate than SCDM and NDM.16  

 The three methods (NDM, SCDM, and CSDM) differ only in how the decoherent 

state evolves during the trajectory.  Trajectories evolve continuously in all DM methods, and 

there is no frustrated switching.  When a DM trajectory attempts to decohere to an 

energetically forbidden state, the decoherence slows down, and the trajectory then evolves 

coherently in a mixed state until the forbidden state becomes allowed or until the dynamics 

changes in some other way, i.e., though the trajectory cannot fully occupy an energetically 

forbidden state, it may evolve on an average potential that contains some character of the 

forbidden state.  This differs from TSH methods, where forbidden hops cause the distribution 

of TSH trajectories to no longer match the distribution called for by the electronic density 

matrix. 
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 All of the DM methods mentioned so far involve nonlinear decay of mixing of the 

density matrix because of the way that we originally introduced the decay terms in terms of 

the wave function; in particular, the off-diagonal terms contain one density matrix element 

divided by another.  From now on, we call these DM methods nonlinear decay of mixing 

method (NLDM) methods.  The key goal of the present paper is to test the sensitivity to 

recasting the decay of mixing in a linear form, as postulated by most methods cast originally 

in density matrix language.   

 Quantum simulation can have two different meanings. It can mean the use of 

quantum mechanics to simulate physical systems, or it can mean the use of semiclassical 

algorithms or macroscopic models to simulate quantum systems. We are interested in the 

latter. 

 A quantum system interacts with its environment, which destroys the coherence in 

a robust basis,51,52 called the pointer basis or the einselected (environmentally induced 

superselected) basis.52,53  The system decoheres to a statistical classical mixture. We 

simulate this as stochastic demixing to an ensemble of classical states. The essence of 

decoherence is finding the robust basis in which the density matrix becomes diagonal; the 

density matrix is always diagonal in some basis (since it is a Hermitan operator, it has 

eigenvectors), but only in the pointer basis does it remain diagonal.53 

 Decoherence is an essential part of any quantum subsystem in contact with an 

environment, i.e., of any system smaller than the entire universe, and its implications 

have a profound effect on emergence of applicability of classical modes of thought to 

quantum systems, that is of classical mechanics as a good approximation to quantum 

mechanics under certain circumstances.50  However, much less attention has been paid to 

its relevance for quantum simulation, that is, practical classical-like approximations to 

quantum systems under conditions where classical mechanics is not applicable and 

quantum effects are large.54 

 Although more general formulations are available,55 considerable attention has 

been paid to the evolution of a quantum system interacting linearly and perturbatively 

with a high-temperature thermal environment.50,56  However, these assumptions are not 
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always applicable; decoherence is more general, and in some cases we want to 

concentrate on the more general features of decoherence and the properties it has even 

when the system-environment interaction is nonlinear, strong, and nonthermal, and when 

the environmental relaxation time is not fast compared to the primary system dynamical 

time scale. As an example of a more general property of decoherence,  Zurek has pointed 

out that in general the decoherence rate cannot be faster than the inverse of the spectral 

cutoff of the environment or the rate at which coherence is created.50  An example of a 

general feature that might be relevant for our work here is that if the environment is more 

classical than the system, decoherence should be rapid compared to relaxation. For 

example, if vibronic relaxation occurs on the picosecond time scale, decoherence might 

be much faster, for example, faster than a tenth of a picosecond. 

 The approach to the quantum simulation embodied in the decay of mixing 

methods is to replace the Liouville-von Neumann (LvN) equation, which is equivalent to 

the Schrödinger equation and describes the “apparent ensemble”57 corresponding to a 

pure superposition state by a fictitious, stochastic ensemble evolving according to a 

modified LvN equation containing relaxation terms. To emphasize the distinction, the 

original LvN equation may be called the unitary LvN equation and the modified one may 

be called a quantum master equation. The use of stochastic ensembles has a long history 

in the quantum theory of open systems,58 and the decay of mixing methods involve using 

the concept to create new semiclassical algorithms. We will see that some old questions 

appear in new guises. For example, “What is the pointer basis?” becomes “Is the 

adiabatic or diabatic representation a closer approximation to the true pointer basis in the 

interaction region?” or even “Since the true pointer basis in the interaction region is 

unknown, can we devise an algorithm whose accuracy does not depend strongly on the 

choice of representation?”  Similarly, the question “What is the physical decoherence 

rate?” becomes “What algorithmic decoherence rate allows the observables calculated 

from an ensemble of semiclassical trajectories to best simulate the observables calculated 

from a quantum wave packet?”  
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 Note that we have used the term “quantum master equation” rather than 

“dissipative LvN equation”—either can be used in this context. It is important though to 

keep in mind that “dissipation” often refers to essentially irreversible transfer of energy 

into a subsystem with many degrees of freedom, where it is lost; and the decoherence that 

has been most heavily discussed involves transfer of information into a many-degrees-of-

freedom subsystem where it is lost. Even “relaxation” sometimes has the connotation of 

interaction with a heat bath. In contrast, consistent with recent appreciations of the 

broader context in which decoherence must be studied,59 here we consider a small 

environment, the nuclear degrees of freedom of a gas-phase molecule. Furthermore, 

whereas the goal of much master equation work is to eliminate the need to treat the 

environmental system explicitly, in the present work we treaty the environment 

explicitly, but because we make a classical approximation for the environment, we need 

to introduce decoherence explicitly into the quantum primary system.  A question we 

have asked in previous work is: Can we formulate stochastic demixing of the primary 

system (the electronic degrees of freedom) to an ensemble of noninterfering states by 

adding relaxation terms (a time-asymmetric mechanism) to a Schrödinger equation and 

transforming to the density matrix language (as has been done in the decay of mixing 

methods)? In the present article we follow this with: How does this compare to adding 

relaxation terms directly to LvN equation, as is usually done? Is there an essential reason 

to prefer one or another of these methods for formulating a statistical, irreversible, local 

equation of motion that describes a subsystem (the electronic degrees of freedom) 

strongly coupled to an environment (the nuclear degrees of freedom)? 

 Master equations (equations, usually approximate, for the evolution of a density 

matrix or the diagonal elements of a density matrix) may be classified as Markovian 

(time local, generated by a positive semigroup of irreversible time evolution60) or non-

Markovian.54,55,61,62  We have used both approaches: the natural switching and self-

consistent switching methods are Markovian, whereas the our more recent coherent 

switching method is non-Markovian, and the time nonlocality (memory) is controlled by 

an auxiliary density matrix and a strong-interaction criterion that controls the time 
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interval over which the auxiliary density matrix is propagated coherently. One of the 

attractive features of the coherent switching decay of mixing method is that although it 

describes non-Markovian evolution, it does so entirely in terms of differential equations, 

without the requirement for integrodifferential equations, a feature that has also occurred 

in some earlier work.61  We will see that the various elements may, in principle, be 

combined in more than one way, and one of the goals of the present paper is to test the 

robustness of the resulting semiclassical methods to changing these elements. 

 Although the NLDM schemes were originally developed by adding decay terms to 

the time-evolution of the electronic wave function, i.e., to the time-dependent Schrödinger 

equation,18 the Schrödinger equation of motion including these decay terms may be 

transformed into a Liouville-von Neumann equation.15,16  Although these equations of 

motion are theoretically equivalent, it is easier to reformulate the DM methods in a linear 

way if one works directly with the density matrix, and this is accomplished in Section II.  

Section III presents various switching algorithms for decoherent states in this context.  

Section IV reviews the decay time and the decoherent direction.  Section V presents several 

computational details.  Section VI tests several semiclassical methods, involving both linear 

and nonlinear decay of mixing with decoherent and coherent switching, for 17 test cases 

involving 8 three-dimensional atom-diatom systems.  Section VII presents concluding 

remarks.  

 

II. DECAY OF MIXING METHODS 

 In this section, we present the theory entirely in terms of the density matrix without 

referring to the equations of motion for the wave function.  In the decay of mixing methods, 

the time derivative of the density matrix has two components:  one arising as the solution to 

the fully coherent Liouville-von Neumann equation, and one that incorporates electronic 

decoherence.  In general, we write:16 
D
kk

C
kkkk �� �� ��� ��� '  ,                                                     (1) 

where the coherent part is given in a general representation (diabatic or adiabatic) by 
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� � � �� 	
 ������
l

lklkkllkklkl
C
kk iUiUi '''' dRdR ������ ���  ,                       (2) 

where k, k’, and l label electronic states (k, k’, l = 1, 2, ..., m, where m is the number of 

electronic states), R is an N-dimensional vector of nuclear coordinates, an overdot denotes a 

time derivative, and 'kkU  is the symmetric potential energy matrix defined by  

'el' kHkU kk �                                                            (3) 

where Hel is the electronic Hamiltonian plus nuclear repulsion.  The nonadiabatic coupling 

vector kk �d  is an m  m anti-Hermitian matrix in electronic state space, and each element is a 

vector in R: 
  '' kkkk Rd ��                                                          (4) 

where R�  is the N-dimensional nuclear gradient.  In the adiabatic representation, U is a 

diagonal matrix called V; and one can define a “diabatic” representation where kk �d  is zero 

and U is not diagonal (although true diabatic representations do not exist,63 approximate 

diabatic representations63–66 are very useful and are widely used in approximations).  The 

second term of Eq. (1) is an algorithmic control term added to simulate decoherence. 

 By conservation of density, 

0
1

�

�

m

k
kk��                                                         (5) 

and Eq. (2) leads to conservation for the coherent terms, 

0
1

�

�

m

k

C
kk�� ;                                                        (6) 

thus we obtain a restriction on the decay terms:   

0
1

�

�

m

k

D
kk�� .                                                        (7) 

Clearly kk�� , C
kk�� , and D

kk��  can be either negative or positive.  Whereas C
kk��  is determined 

by the time-dependent Schrödinger equation, D
kk��  results from algorithmic choice.  We 

formulate the DM methods such that there is some electronic state K (the “decoherent state”) 

toward which the system is decohering, and this requires that 0�D
kk��  for Kk �  

and 0�D
KK�� .  This guarantees that the trajectory corresponds asymptotically to a particular 
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electronic state in the pointer basis.  Assuming that the diagonal elements decay by a linear, 

first-order process yields 

Kkkk
kK

D
kk ���       , 

1
�

�
��  ,                                               (8) 

and 

      , 
1


�
�Kk

kk
kK

D
KK �

�
��                                              (9) 

where kK�  is a first-order decay time to be specified.  The time derivatives D
kk ���  of the off-

diagonal matrix elements are not yet specified, and they are discussed later.  

 The introduction of the decay term of Eq. (8) is the key element of the decay-of-

mixing methods.  In a real physical situation, a system interacting with an environment ends 

in a mixed state, rather than a pure state, which would result if the density matrix, originally 

assumed pure, were evolved by the time-dependent Schrödinger equation.  We want to 

simulate the final ensemble corresponding to the mixed state of the electronic subsystem by 

an ensemble of pure states.  Thus, whereas the destruction of interference in the real system 

leads to a mixture that corresponds to a probability distribution of final observables, the 

simulation system tends to a probabilistic distribution of pure states, each corresponding to 

different observables. 

 Next, we consider the nuclear motion.  We use an isoinertial, mass-scaled nuclear 

coordinate system R in which all nuclear masses are scaled to the same reduced mass�, and 

the momentum conjugate to R is called P.  The nuclear motion is represented by an ensemble 

of classical trajectories, and the nuclear position and momentum of each trajectory evolve 

according to classical equations of motion,  

  �/PR ��                                                                (10) 

and 

  DC .PPP ��� ��                                                           (11) 

where the coherent part is15,16   

� 	 � 	

� 	 jk
j

kk
k k

kj

kk
k kk

kkkk
k

kk

U

UUt

��
�

�
��

�







 



�

�����

d

P R

�

��

Re2

Re2C
R�

                           (12) 
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and the decoherent part is15,16,18   

s
sP

P ˆ
ˆ

D
D

�
��

V�
�

�
                                                        (13) 

where15,16  

� 	
 


��

���
k kk

kk
D
kk

k
kk

D
kk UUV '

D Re2 �� ���   .                               (14) 

and ŝ  is a unit vector (specified below) that represents the decoherence direction into which 

energy is deposited and out of which energy is consumed.  The right-hand side of Eq. (13) is 

the negative of the decoherent force, and it drives the trajectory to a pure electronic state. The 

decay of mixing methods differ in the off-diagonal matrix elements D
kk ��� , as discussed next. 

 

II.A. Nonlinear decay of mixing (NLDM)  

 Previously, we added first-order decay to the electronic wave function.15,16,18  By 

making the reasonable assumption18 that the real and imaginary parts of the component of 

the electronic wave function corresponding to a given electronic state decay at the same rate 

(in a particular representation, i.e., in the pointer basis), we obtained equations which are 

equivalent to the following decay law for the decoherence in the pointer representation:15,16 
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where the decay terms for the diagonal elements push KK�  in the denominator to unity and 

kk�  in the summation to zero.  The nonlinear terms in Eq. (15) therefore vanish 

asymptotically.  

 

II.B. Linear decay of mixing (LDM)  

 We linearize the decay of mixing by ignoring nonlinear terms in Eq. (15). Then we 

have  
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 kk      ,
2

1
���� �

�
� kk

kk

D
kk �

�
��  (16) 

where the factor of 2 in Eq. (16) is not necessary, and we could put any nonzero constant 

there; however, here we define the decay time to be consistent with notation used above.  The 

decay times in Eq. (16) need not be the same as those that appear in the diagonal matrix 

elements in Eqs. (8) and (9), but in the present article we take them to be the same for 

simplicity.  

 Equations (15a) and (16) lead to the widely assumed situation where coherence 

decays exponentially.  This form for the decay can be derived under reasonable sets of 

assumptions for other problems,67 but for the present problem of the decoherence of the 

electronic degrees of freedom by the nuclear ones, it has the status of a possible fundamental 

assumption. 

   

II.C. Population-driven decay of mixing (PDDM)  

 In the population-driven decay of mixing (PDDM) method, we assume that there is 

no decoherent decay of the off-diagonal matrix, i.e.,  

kkD
kk ����       ,0��                                                            (17) 

Note that this method, like LDM, is linear.  If we use the usual convention that the relaxation 

time for the diagonal elements is called T1 and that for the off-diagonal elements is called T2, 

this corresponds to T2 � �  and T1 finite, whereas usually T2 � T1.  However, we should keep 

in mind that the decoherent decay in the DM methods is algorithmic decay, not physical 

decay.  We are adding decay terms to the equations for an ensemble of independent 

semiclassical trajectories so that the ensemble average best simulates the behavior of a 

quantum wave packet.  In this case, it is interesting to test the effect of making a minimal 

perturbation to the equations of motion consistent with forcing the system to continuously 

switch to a single potential energy surface asymptotically.   In the PDDM scheme, we make 

only this minimal perturbation.   

 Note that kk ��  for k � ��k  does not tend to zero in this method, just as it also stays 

finite in trajectory surface hopping.  However, as compared to trajectory surface hopping, the 
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system has no continuous changes in momenta and it uses Ehrenfest-like dynamics in regions 

where the potential energy surfaces are strongly coupled.  Thus the PDDM method provides 

an algorithmic density matrix that may be useful for calculations, but it does not necessarily 

satisfy the constraint8   

  2
nmmmnn ���   

which holds for true density matrices. 

 

III. DECOHERENT AND COHERENT SWITCHING  

 Next we discuss how the decoherent state is switched along the DM trajectory.  In the 

TSH method, at a hop, the trajectory discontinuously switches from one pure electronic state 

to another pure electronic state.  In DM methods we instead switch the decoherent state.  

 

III.A. Natural switching (NS)  

 The natural switching (NS) scheme is a direct application of Tully’s fewest switches 

scheme.  For example, in the two-state case, the probability of switching from a decoherent 

state K to some other decoherent state K �  between time t and time t + dt is given by 
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The multi-state generalization of Eq. (18) is given in Appendix A of Ref.16. 

 

III.B. Self-consistent switching (SCS) 

 In Eq. (18) above, the change in the density matrix elements, including the change 

due to decoherence, is used to calculate the switching probability.  In the self-consistent 

switching (SCS) scheme, the switching probability is calculated using only the coherent part 

of the change in elements of the density matrix.  In the two-state case this yields: 
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KK

KK
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P
�

��
     .                                                  (19) 

This may be interpreted as “semi-coherent switching” because the instantaneous change in 

the density matrix due to decoherence is not included, although the decoherence due to the 
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trajectory’s history is included in the denominator of Eq. (19), since �KK is the decohered 

density.  The multi-state generalization of Eq. (19) is given in Appendix A of Ref. 16.  

 

III.C. Globally coherent switching (GCS)  

 The globally coherent switching (GCS) method preserves coherence in the 

populations used to control switching over the entire trajectory.  To accomplish this, we 

define a set of coherent state populations KK ��~  which satisfy the fully coherent evolution 

given in Eq. (2).  Initially kkkk �� � ��~ , but these two density matrices are propagated 

separately.  In the two-state case the switching probability is given by 
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KK
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��
.    (20) 

 

III.D. Coherent switching (CS)  

 The above schemes are all time-local (or Markovian), but the actual time derivatives 

of the density matrix are not solely determined by information about the current state of the 

system but also by its time history, i.e., the evolution is nonlocal in time or non-Markovian.  

In this section we discuss a key feature that accounts for such time nonlocality, and we show 

how to include a critical aspect of memory into the propagation by incorporating the concept 

of a localized (but not instantaneous) interaction between the quantum states. 

 Parlant and Gislason3 introduced a method in the framework of trajectory surface 

hopping (TSH) that we called exact coherent passage TSH (ECP-TSH).  In this method (for a 

two-state case) the following coupling function is monitored: 

� 	 � 	tt 12dR ��" �                                                        (21) 

At each local minimum of ", the density matrix is reinitialized to correspond to a pure state, 

i.e., �KK = 1 and all other elements equal zero.  The ECP-TSH method integrates the 

electronic equations of motion in a coherent way throughout each complete transversal of a 

strong coupling region, but it handles decoherence differently from the DM methods in 

several respects.  First, there is no decay of mixing term.  Second, each trajectory propagates 
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locally on a single potential surface rather than an Ehrenfest-weighted surface.  Third, the 

ECP-TSH method involves hops with discontinuities in the nuclear momentum, and when a 

hop occurs it requires that the semiclassical trajectory be repropagated from a point of 

maximal coupling.  Fourth, whether or not a hop occurs, at each local minimum of"(t) , the 

electronic coefficients are reinitialized to unity or zero.  This means that decoherence is 

instantaneous in the ECP-TSH method, and it appears from the results16 that this does not 

describe decoherence as well as possible.  Nevertheless, this idea provided stimulation for a 

(locally) coherent switching scheme that we abbreviate CS. 

 In the CS scheme, the switching probability is defined as in Eq. (20) for the GCS 

method.  In the CS scheme however, KK ��~  is set equal to KK ��  at all local minima of some 

coupling function.  Note that we sync the switch-controlling density matrix to the decohered 

one (that controls the effective potential) rather than re-initialize it.  By setting 

KKKK �� � ��~ , the amount of decoherence is determined by the difference between the two 

sets of electronic density matrices: the one that is propagated with decay-of-mixing terms and 

the one that is propagated coherently. Thus, in particular, the amount of decoherence 

introduced at a local minimum of the coupling function depends on the size of the coupling 

region and other dynamical factors. We emphasize that the equations of motion governing 

the ij�~  elements and hence governing the switching probability in the CS method are treated 

in a coherent and uninterrupted way throughout each complete passage through a strong 

coupling region (although one does allow switches in the decoherent state), but decoherence 

is introduced into ij�~  between different strong coupling regions by setting ijij �� �~  at 

minima of the coupling function.  

 We have not used the same coupling function as Parlant and Gislason.  We previously 

defined the following functions for both adiabatic and diabatic representations,16   

  � 	 
�
j

KjK tD
2

d , (22) 

and 

  � 	 
 ��
j

KjK tC
2

vibRd � . (23) 
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Calculations employing Eq. (22) are called CS, and those employing Eq. (23) are called CS-

C.  These coupling functions arise from the adiabatic representation where the coupling is 

determined by the nonadiabatic coupling vector, but it is clear (at least for the two-state case) 

that they also provide a measure of coupling in the diabatic representation.  Nevertheless, it is 

interesting to ask if a quantity computed directly in the diabatic representation works as well.  

Thus we define 

  � 	 
�
�Kj

KjK UtS
2

, (24) 

and 

  � 	 
 ��
j

jjKKK UUtL
2

. (25) 

The first quantity, Eq. (24), is a direct expression in terms of the scalar-coupling (S) matrix 

elements, and the second, Eq. (25), is a measure of deviation from the crossing point where a 

local minimum (which might be zero) occurs in the diabatic level-spacing (L).  We also 

consider using the reciprocal of Eq. (25).  Equations (22), (24), and (25) and the reciprocal of 

(25) will be considered as alternative ways to carry out CS calculations.  Note that these four 

equations give qualitatively different definitions of a strong-coupling region for many 

problems.   

 When it is desired to associate a unique abbreviation with each choice, diabatic 

calculations carried out using Eq. (22) may be labeled CS(D), that is, coherent switching 

based on the magnitude of the derivative coupling; those with Eq. (23) may be labeled CS-C, 

that is, coherent switching with strong interaction boundaries based on a component; those 

carried out with Eq. (24) may be labeled CS(S), that is, coherent switching with strong-

interaction boundaries based on scalar diabatic coupling; those carried out with Eq. (25) may 

be labeled CS(L), that is, coherent switching in the diabatic representation with strong-

interaction boundaries based on diabatic level-spacing; and those carried out with the 

reciprocal of (25) will be labeled CS(1/L).  A possible advantage of choosing the S, L, or 1/L 

expressions in the diabatic representation is that one can avoid the diabatic-adiabatic 

transformation.  This may be useful for some systems, although in general, given a diabatic 

representation, this transformation is not computationally demanding.  Thus the motivation 
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for choosing a particular demarcation scheme will be the consistency of the semiclassical 

formulation, as judged by the accuracy of the results for a diverse set of problems. 

 

III.E. Combinations 

 We have defined five switching schemes (natural switching, self-consistent 

switching, globally coherent switching, coherent switching basis on a component, and 

coherent switching) in the adiabatic representation.  Any of these schemes may be used in 

combination with the three decay of mixing algorithms (NLDM, LDM and PDDM) 

discussed in Sec. II for a total of fifteen semiclassical methods in the adiabatic representation.  

In the diabatic representation we will consider the D, S, L, and 1/L criteria for strong-

interaction regions in the CS scheme, for a total of eight schemes and 24 combinations.  

However some of these are only of academic interest at this point since we know from 

previous work15,16 that the NS, SCS, and CS-C schemes are less accurate than CS.  But the 

GCS, CS(S), CS(L), and CS(1/L) schemes have never been tested.  Some of the 

combinations are equivalent to previous methods: NLDM with NS is NDM; NLDM with 

SCS is SCDM; NLDM with CS-C is CSDM-C; and NLDM with CS is CSDM.  The other 20 

are new.  To emphasize the essential characteristics, LDM with CS is abbreviated CSDM/L, 

PDDM with CS is abbreviated CSDM/PD.  Furthermore, NLDM, LDM, and PPDM with 

GCS may be abbreviated GCSDM, GCSDM/L, and GCSDM/PP, respectively. 

 

IV. DECAY TIME AND DECOHERENCE DIRECTION 

  Next we review how the decay time and decoherent direction are determined.  The 

same prescriptions16 are used for all of the combinations, and they are summarized briefly 

here to make this paper more self-contained. 

 The unit vector ŝ  in Eq. (13) represents the direction into which nuclear kinetic 

energy is deposited or out of which energy is consumed, and in the two-state case it is given 

by16 
� 	� 	 � 	 vibvib0vibvib0

ˆˆˆˆˆˆˆ PdPds PadPad KkKkKkKkKkKk ����� dPdP .                (26)  



21 

   

where a0 is a bohr length, vibP̂ and Kkd̂  are unitless unit vectors in the direction of vibP (the 

local vibrational momentum26) and Kkd , respectively, and Kkd  is the magnitude of Kkd . 

The generalization of Eq. (26) to multiple states has been given previously.15,16   

The decay time we use is16   
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where E0 is a constant.  In the present work we use E0 = 0.1 Eh (where 

eV 2116.27hartree 1 1 �#hE ), which is the same value as used in Ref. 16. 

 Equation (27) exhibits two very interesting qualitative features.  First, individual off-

diagonal density matrix elements do not all decohere at the same rate, and coherences 

between levels that are widely separated decay faster than those between levels that are close 

to each other.  This behavior has been observed in semiclassical studies of an oscillator 

coupled to a bath.68,69  Second, the decoherence time tends to � as the momentum tends to 

zero.  This feature, which follows in our work from the self-consistent treatment of the 

system-environment interaction, is consistent with a study70 based on a general master 

equation that showed that coherence decay becomes slower than any exponential as the 

environmental temperature tends to zero. 

 

V.  THREE-DIMENSIONAL, TWO-STATE TEST CASES 

The model systems we consider here are two-state atom-diatom nonadiabatic 

collisions and have the form: 

 
A*� BC(v, j) !

B � AC ( ��E int )
A � BC ( ����E int )
��
��
��

, 
(28a)
(28b)

 

where A, B, and C label atoms, the asterisk indicates electronic excitation, and v and  j are 

the initial vibrational and rotational quantum numbers. Equation (28a) describes nonadiabatic 

reaction, where intE �  is the final internal (i.e., rovibrational) energy of the AC diatom; and  

Eq. (28b) describes quenching, where intE ��  is the final internal energy of the BC diatom.  We 

label the initial conditions by the total energy E and the initial vibrational and rotational 

quantum numbers v and j of the diatomic molecule.  For all of the cases considered here, the 
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total angular momentum of the system is zero. Electronic angular momentum is neglected 

consistently in both the quantal and semiclassical calculations. 

 For the collision energies used in this paper, there are only three possible collision 

outcomes (combinations of the final arrangement and electronic state): adiabatic collision on 

electronically excited state, reactive de-excitation, and quenching (nonreactive de-excitation).  

 The semiclassical trajectory calculations and the accurate quantum mechanical results 

are compared for the following six quantities (i = 1, 2, …, 6): 

 PR the probability of reaction, which is the outcome in Eq. (28a) 

 PQ the probability of quenching, which is the outcome in Eq. (28b) 

 PN the total probability of a nonadiabatic event, which is the sum of PR and PQ , 

 FR the reactive branching fraction, which is defined as PR/PN 

 intE�  the average internal (vibrational-rotational) energy of the diatomic fragment in 

Eq. (28a) 
 intE ��  the average internal (vibrational-rotational) energy of the diatomic fragment in 

Eq. (28b). 

For the three probabilities the error $% i  for quantity i and test case $  (nine cases for MXH, 

five cases for MCH, and three case for YRH) is calculated as the logarithmically averaged 

percentage error computed as described elsewhere,71 and for the remaining three quantities, 
FR, intE� , and intE �� , the error $% i  is defined as the unsigned relative percentage error 

computed as described elsewhere.16  The average of the logarithmically averaged percentage 

errors in PR, PQ, and PN is called the average unsigned percentage error in probabilities 

(column heading “Prob”), and the average of the unsigned relative percentage errors in FR, 

��E int , and ����E int  is called the average unsigned percentage error in fractional distributions 

(column heading “Fract”); the latter name is appropriate because the relative error in internal 

energy is identical to the relative error in the fraction of total energy that is deposited in 

internal energy.  Finally, we average the two averages to obtain an average unsigned 

percentage error for all six observables (column heading “All”). 

 The model systems feature three types of nonadiabatic transitions and are labeled as 

MXH, MCH, or YRH. 
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The MXH systems feature avoided crossings of the Landau-Zener type72–74 in 

which the two diabatic potential energy surfaces cross with nonzero diabatic coupling.  

Nine MXH cases are included:  the SB, SL, and WL parameterizations, with total energy 

E = 1.1eV, v = 0, and j = 0, 1, 2.  Details of the MXH parameterizations and the accurate 

quantum mechanical calculations have been given previously.47  For the MXH systems, 

the quantum transition probabilities show oscillations, but the semiclassical methods do 

not.  Therefore, for MXH systems, semiclassical results for PR, PQ, PN, and FR at 1.1 eV 

are compared to quantal results averaged over an energy interval.  When a quantity, say 

$, is quantum mechanically averaged at 0E , it means  

 $� E0� 	� 1
2N �1

$ E0 � j&E� 	
j��N

N

 , (31) 

where E&  is small increment around 0E .  In applying Eq. (29) to the MXH systems in the 

present paper, N is 2 and &E = 0.0055 eV.  The values of ��E int  and ����E int  are not averaged. 

 The MCH systems feature conical intersections75–77 in which the two diabatic 

potential energy surfaces cross at some geometries where the diabatic coupling is zero.  Five 

MCH cases are included:  the SB, SL, TL, WB, and WL parameterizations, with E = 1.1eV 

and v = j = 0.  Details of the MCH parameterizations and the accurate quantum mechanical 

calculations have been given previously.78  For MCH and YRH systems, the quantal results 

used for comparison in this article are not averaged. 

 The YRH systems feature interactions of the Rosen-Zener-Demkov type,79–81 by 

which we mean cases where the two diabatic potential energy surfaces do not cross and are 

weakly coupled.  Three YRH cases are included:  the YRH(0.1) parameterization with the 

E = 1.1eV and v = j = 0 and the YRH(0.2) parameterization with the E = 1.10 and 1.02 eV 

and v = j = 0.  The number in parentheses denotes the strength of the coupling; this and other 

details of the YRH parameterizations and the accurate quantum mechanical calculations have 

been given previously.82   

 For the decay of mixing trajectories, the coordinates and momenta of the nuclei and 

the electronic state populations are integrated using an adaptive integration algorithm that 

was designed for use with semiclassical trajectory calculations.28 The algorithm uses a 
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Bulirsch-Stoer integrator with polynomial extrapolation83 modified such that the integrator is 

prohibited from stepping over local peaks and minima in the electronic probabilities.  For the 

present calculations, the integration parameters were given the following values:47 %BS = 

10—12 Eh and hmin = 10–4 a.u.t. (1 a.u.t. = 1 atomic unit of time = 2.4189 x 10–2 fs), which 

gives converged results for the MXH, MCH, and YRH systems.  The trajectories begin the 

simulation with the lone atom (Y in the case of YRH and M in the case of MXH and MCH) 

separated from the center-of-mass of the diatom by 35 a0 (1 a0 = 0.52918 Å) for the MXH, 

MCH cases and by 20 a0 for the YRH cases, and the simulation was ended when the product 

fragments were separated by at least 30 a0 for all three systems.  We have verified that the 

results of the semiclassical simulations do not change when these distances are increased.  

For the decay of mixing trajectories, the final state internal energies intE � or intE �� , are 

determined without quantization. In particular, the relative translational energy becomes 

constant after the collision, and the internal energy is computed as total energy minus the 

final relative translational energy minus the minimum electronic energy of the diatomic 

fragment. 

 Calculations are performed in the adiabatic (a) and diabatic (d) representations.  

Calaveras County (CC) calculations with three combinations of adiabatic and diabatic 

representations are also performed. The Calaveras County representation48 is defined as the 

representation with the fewest hopping attempts in a trajectory surface hopping calculation, 

and previous work has shown48,77,81 that this representation is, on average, the most accurate 

representation for non-Born-Oppenheimer semiclassical trajectory calculations. 

 All new calculations in this paper were run with the NAT computer code—version 9.0, 

whereas results in previous papers (some of which are reanalyzed below for the final table) 

are calculated with NAT–version 8.1.84   

 

VI.  RESULTS AND DISCUSSION 

 The supporting information provides full sets of calculated observables and average 

errors for all 15 combinations (see Section III.E) in the adiabatic representation and for 18 of 
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the possible combinations in the diabatic representation.  In the printed article, that is, in this 

section, we tabulate and discuss only the most interesting new results. 

 Table I presents the mean percentage errors for the NLDM,  LDM, and PDDM 

methods employing CS switching.  The table is based on 17 cases for eleven different 

systems of three different types, and so it provides a broad assessment of the accuracy and 

robustness of the methods.  The table shows that the YRH systems present the most critical 

test of which algorithm is the best.  All NLDM, LDM, and PDDM methods with CS 

switching work almost equally well in the adiabatic and Calaveras County representations, 

but the NLDM and PDDM methods are slightly better than the LDM method in the diabatic 

representation.  The S and L criteria for strong interaction regions appear to work well for 

diabatic LDM and PDDM calculations.  In comparing the results in Table I it is not necessary 

to consider costs since the costs for all method in the table are within about a factor of 2 or 

even closer. 

 The overall results in the last column of Table I are obtained by averaging over the 

three types of system, with each type weighted one third.  The NLDM method with CS 

switching, which is the CSDM method presented previously,16 has a mean error of 25% in 

the adiabatic representation, 26% in the diabatic representation with the original D criterion 

for strong interaction regions, and 25% in the diabatic representation with the new S 

criterion.  The Calaveras County representation with the D criterion for both representations 

has 24% error, and using D in the adiabatic representation and S in the diabatic 

representation gives 23% error.  All of these average errors, in the range of 23–26%, are 

comparable to the kind of error one can get from trajectory calculations for Born-

Oppenheimer systems, so it seems unlikely that further reductions are possible by changing 

the treatment of nonadiabaticity.  Indeed the linearized method, LDM, is slightly worse.  

Furthermore, decreasing the decoherent algorithmic control to the minimum necessary to 

guarantee physical final electronic states, as in the PDDM method, gives almost the same 

overall mean errors, ~24%, as the CSDM, provided one uses either the S or L criterion in the 

diabatic representation.  We conclude that the decay-of-mixing methods are very robust with 

respect to details of the implementation and that the linearized methods perform equally as 
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well as our wave function version, which gives nonlinear decay of the density matrix.  The 

fact that the PDDM method with the D criterion in the adiabatic approximation and the S 

criterion in the diabatic approximation are sometimes slightly more accurate than the CSDM 

method is interesting, but it is outweighed by the more physical character of the CSDM in 

driving the off-diagonal elements of the density matrix toward zero and by the fact that the 

overall errors of the CSDM and the PDDM are almost identical. 

 Although we have emphasized the physicality of the DM methods in driving the 

coherences (the off-diagonal elements of the density matrix are called coherences in the 

density matrix literature) to zero, the nonlinear and linearized versions of the method differ in 

the way that they accomplish this.  This is best illustrated by considering the two-state case.  

For two states, with k = 1, K = 2, and �21 = � 12, Eq. (15) of the CSDM yields 
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whereas Eq. (16) of the LDM yields 
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Equation (31) has the behavior that the decoherent control terms always decrease 12� , as 

assumed by phenomenological theories of decoherence, whereas Eq. (30) does not have this 

behavior.  However, since we are working with algorithmic demixing rather than physical 

demixing, and since Eq. (30) follows from adding a decay mechanism to the wave function 

equation of motion, one can argue that the requirement that 12
D
12 ���  is negative need not be 

enforced and might even be inappropriate.  In fact, Elran and Brumer,67 in a study of an 

anharmonic oscillator coupled to a bath, found that coherence both increased and decreased, 

and they called into question the utility of Markovian master equations that predict only 

decay.  Since Table I shows that the LDM method gives significantly less robust results in 

the diabatic representation, we are hesitant to recommend it for electronically nonadiabatic 

processes, although it should be noted that if one uses the L criterion in the diabatic 

representation, the LDM results are good. 

 Table II also shows some results for global coherent switching (GCS).  This scheme 

is interesting because it is the scheme that has always been used in TFS and FSTU�V 
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surface hopping calculations.  It works well for the MXH and MCH systems, and GCS 

switching in both adiabatic and diabatic representations is about as accurate as CS switching 

for these cases.  However, GCS switching is inaccurate for the YRH system.   

 The full results in supporting information confirm that the CS prescription is the best 

switching algorithm as concluded16 previously.  The self-consistent switching (SCS) 

algorithm works almost as well as the CS algorithm for the MXH and MCH systems and it 

shows very good results for the YRH system when simulations are done in the adiabatic 

representation, but SCS shows poorer results when YRH simulations are carried out in the 

diabatic representation.  The natural switching (NS) algorithm shows the same tendencies as 

the SCS algorithm, except that NS shows more representation dependence than SCS for the 

YRH systems.  The full tables in supporting information also show that all three decay-of-

mixing methods (NLDM, LDM, and PDDM) have similar behavior when used with the same 

switching algorithm.  The results are more dependent on the choice of switching algorithm 

than on the choice of the decay-of-mixing method. 

 Next, we consider how fast or slow the system decoheres.  The region where the 

trajectory has negligible nonadiabatic and/or diabatic coupling is not interesting.  Therefore, 

we average the decay time only over the portions of the trajectories where 98.002.0 �� kk� .  

Recall that kk ��  is, except for a factor of 2, the reciprocal of a first-order rate constant, and 

we therefore average the rates, 12/1 � , not the decay times.  The result is re-expressed in time 

units by taking a reciprocal, i.e.,  

12/1
1
�

� #                                                            (32) 

The results for the CS switching algorithm with NLDM, LDM and PDDM decay 

of mixing methods are shown for five of the seventeen cases in Table III.  Notice that the 

average decay-of-mixing time is slightly shorter in the adiabatic representation than in the 

diabatic representation for MXH (SB) with j = 0 and MCH (SB) with j = 0, but the 

average decay-of-mixing time is much longer in the adiabatic representation than in the 

diabatic representation for MXH (WL) with j = 0 and MCH (WL) with j = 0.  For YRH 

(0.2) with j = 0 the average decay-of-mixing is about the same. NLDM, LDM, and 
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PDDM decay of mixing methods give similar average decay-of-mixing times.  For the 

MXH (SB) and MCH (SB) cases with j = 0, the Calaveras County representation is the 

adiabatic representation, while for the MXH (WL) and MCH (WL) cases with j = 0, the 

Calaveras County representation is the diabatic representation.  The examples in Table III 

show that the representation with the shorter average decay-of-mixing time corresponds 

to the Calaveras County representation for the crossing and conical intersection cases of 

nonadiabatic transitions. For the non-crossing cases, the average decay-of-mixing times 

are about the same.  

Since the method of comparing semiclassical calculations to quantum ones is 

improved in this paper (as compared to our previous ones), we also compared other 

semiclassical results to the quantum ones by precisely the same procedure.  Table IV 

compares the overall errors for the present methods to trajectory surface hopping and the 

semiclassical Ehrenfest method.  The improvement is significant.  Again, it is not 

necessary to include computation costs since the cost for all methods in the table are 

similar. 

 

VII. CONCLUDING REMARKS 

The decay of mixing (DM) formalism18 was developed by adding decoherence to the 

semiclassical Ehrenfest method and has been shown to be more accurate than surface 

hopping methods for non-Born-Oppenheimer collisions.  In this article, we have tested the 

sensitivity of the DM method to details of how decoherence is introduced into the off-

diagonal elements of the density matrix and how the switching probability is computed.  The 

comparison of our previous coherent switches with decay of mixing (CSDM) method to the 

new methods shows that CSDM is very robust with respect to details of the implementation.  

In particular, numerical tests based on ensembles of trajectories show that allowing for new 

forms of decoherence and changes in the switching algorithm do not lead to significant 

overall improvement, although we can achieve an average improvement of a couple of 

percentage points.  
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 Although the present article only involves two-state applications, all methods are 

applicable to general multi-state cases.  The new methods presented here complement the 

older methods in that we now have a series of methods with various levels of coherence and 

decoherence.  (The PDDM method is more coherent than the LDM method, and the LDM 

method has similar coherence to the NLDM method.  Among the four switching algorithms, 

GCS is the most coherent, CS is less, SCS is even less, and NS is the least coherent).  This 

may help us to better understand the physical nature of decoherence.   

 

ACKNOWLEDGMENTS 

 The authors are grateful to Shikha Nangia for many helpful contributions and to 

David Micha for helpful suggestions.  This work was supported in part by the National 

Science Foundation under grant no. CHE03-49122. 

 

SUPPORTING INFORMATION AVAILABLE 

 A list of acronyms and abbreviations, mean unsigned errors not reported in the text, 

mean decay of mixing times, quantum mechanical results, and semiclassical trajectory 

results.  This material is available free of charge via the Internet at http://pubs.acs.org. 



30 

   

 REFERENCES 

(1) Bunker, D. L. Methods Comput. Phys. 1971, 10, 287. 

(2) Truhlar, D. G.; Muckerman, J. T.  In Atom-Molecule Collision Theory: A Guide for 

the Experimentalist, Bernstein, R. B., Ed.; Plenum: New York, 1979; p. 505. 

(3) (a) Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids; Clarendon Press: 

Oxford, 1987.   (b) Brooks, C. L. III; Karplus, M.; Pettit, B. M. Adv. Chem. Phys. 

1988, 71, 1.  (c) Benjamin, I.  In Modern Methods for Multidimensional Dynamics 

Computations in Chemistry; Thompson, D. L., Ed.; World Scientific: Singapore, 

1998; p. 101.  (d) Stanton, R. V.; Miller, J. L.; Kollman, P. A.; ibid.; p. 255. (e) Rice, 

B. M.; ibid. p. 472. 

(4) For recent review papers, see: (a) Tully, J. C.  In Modern Methods for 

Multidimensional Dynamics Computations in Chemistry, Thompson, D. L., Ed.; 

World Scientific: Singapore, 1998, p. 34. (b) Ben-Nun, M.; Martinez, T. J. Adv. 

Chem. Phys. 2002, 121, 439. (c) Jasper, A. W.; Kendrick, B. K.; Mead, C. A.; 

Truhlar, D. G.  In Modern Trends in Chemical Reaction Dynamics, Part I, Yang, X., 

Liu, K., Eds.; World Scientific: Singapore, 2004; pp. 329–392. (d) Worth, G. A.; 

Robb, M. A. Adv. Chem. Phys. 2002, 124, 355. (e) Zhu, C.; Mil’nikov, G. V.; 

Nakamura, H.  In Modern Trends in Chemical Reaction Dynamics, Part I, Yang, X., 

Liu, K., Eds.; World Scientific: Singapore, 2004; pp. 393-473. (f) Jasper, A. W.; Zhu, 

C.; Nangia, S.; Truhlar, D. G. Faraday Discussions 2004, 127, 1. (g) Stock, G.; 

Thoss, M.  In Electronic Structure, Dynamics and Spectroscopy, Domcke, W., 

Yarkony; D. R., Köppel, H., Eds.; World Scientific: Singapore, 2004; p. 619. 

(5) (a) Sakurai, J. J. Modern Quantum Mechanics; Addison-Wesley, Redwood City, CA, 

1985. (b) Bohm, A. Quantum Mechanics: Foundations and Applications; 3rd ed.; 

Springer-Verlag: New York, 1993; p. 64. (b) Gottfried. K.; Yan, T.-M. Quantum 

Mechanics: Fundamentals; 2nd ed.; Springer: New York, 2003; p. 46. 

(6) (a) Fano, U. Rev. Mod. Phys. 1957, 29, 74. (b) Blum, K. Density Matrix Theory and 

Applications; Plenum: New York, 1981. (c) Schatz, G. C.; Ratner, M. A. Quantum 



31 

   

Mechanics in Chemistry; Prentice-Hall: Englewood Cliffs, 1993; p. 277. (d) May, V.; 

Kühn, O. Charge and Energy Transfer Dynamics in Molecular Systems; Wiley-VCH: 

Berlin, 2000; p. 73. 

 (7) (a) Johnson, C. S. Jr.; Tully, J. C. J. Chem. Phys. 1964, 40, 1764. (b) Coalson, R. D.; 

Karplus, M. J. Chem. Phys. 1983, 79, 6150. (c) Bittner, E. R.; Light, J. C. J. Chem. 

Phys. 1994, 101, 2446. (d) Berman, M.; Kosloff, R.; Tal-Ezer, H. J. Phys. A 1992, 25, 

1283. (e) Pesce, L.; Saalfrank, P. J. Chem. Phys. 1998, 108, 3045. (f) Guo, H.; Chen, 

R. J. Chem. Phys. 1999, 110, 6626. (g) Costella, F. J. Stat. Phys. 2001, 104, 387. (h) 

Kristensen, J. H.; Hoatson, G. L; Vold, R. L. J. Comput. Phys. 2001, 170, 415. (i) 

Horenko, I.; Weiser, M.; Schmidt, B.; Schütte, C. J. Chem. Phys. 2004, 120, 8913. (j) 

Shi, Q.; Geva, E. J. Chem. Phys. 2004, 121, 3393. 

(8) Mukamel, S. Principles of Nonlinear Optical Spectroscopy (Oxford University Press, 

New York, 1995). 

(9) Beksic, D.; Micha, D. A. J. Chem. Phys. 1995, 103, 3795. 

(10) Bittner, E. R.; Rossky, P. J. J. Chem. Phys. 1995, 103, 8130. 

(11) Ashkenaz, G.; Kosloff, R.; Ratner, M. A. J. Am. Chem. Soc. 1999, 121, 3386. 

(12) Prezhdo, O. V. Phys. Rev. Lett. 2000, 85, 4413. 

(13) Santer, M.; Manthe, U.; Stock, G. J. Chem. Phys. 2001, 114, 2001. 

(14) Prezhdo, O. V.; Rossky, P. J. J. Chem. Phys. 1997, 107, 5863. 

(15) Zhu, C.; Jasper, A. W.; Truhlar, D. G.  J. Chem. Phys. 2004, 120, 5543. 

(16) Zhu, C.; Nangia, S.; Jasper, A. W.; Truhlar, D. G. J. Chem. Phys. 2004, 121, 7658. 

(17) Wong, K. F.; Rossky, P. J. J. Chem. Phys. 2002, 116, 8418, 8429. 

(18) Hack, M. D.; Truhlar, D. G. J. Chem. Phys. 2001, 114, 9305. 

(19) (a) Burant, J. C.; Tully, J. C. J. Chem. Phys. 2000, 112, 6097. (b) Wan, C. C.; 

Schofield, J. J. Chem. Phys. 2002, 116, 494. (c) Ben-Num, M.; Martinez, T. J. Adv. 

Chem. Phys. 2002, 121, 439. (d) Donoso, A.; Zheng, Y.; Martens, C. C. J. Chem. 

Phys. 2003, 119, 5010. (e) Roman, E.; Martens, C. C. J. Chem. Phys. 2004, 121, 



32 

   

11572. 

(20) Tully, J. C.; Preston, R. K. J. Chem. Phys. 1971, 55, 562. 

(21) Blais, N. C.; Truhlar, D. G. J. Chem. Phys. 1983, 79, 1334. 

(22) Parlant, G.; Gislason, E. A. J. Chem. Phys. 1989, 91, 4416. 

(23) Parlant, G.; Alexander, M. H. J. Chem. Phys. 1990, 92, 2287. 

(24) Tully, J. C. J. Chem. Phys. 1990, 93, 1061. 

(25) Coker, D. F.; Xiao, L. J. Chem. Phys. 1995, 102, 496. 

(26) Topaler, M. S.; Hack, M. D.; Allison, T. C.; Liu, Y.-P.; Mielke, S. L.; Schwenke, D. 

W.; Truhlar, D. G. J. Chem. Phys. 1997, 106, 8699. 

(27) Sizun, M.; Song, J.-B.; Gislason, E. A. J. Chem. Phys. 1998, 109, 4815. 

(28) Hack, M. D.; Jasper, A. W.; Volobuev, Y. L.; Schwenke, D. W.; Truhlar, D. G. J. 

Phys. Chem. A 1999, 103, 6309. 

(29) Babikov, D.; Gislason, E. A.; Sizun, M.; Aguillon, F.; Sidis, V. J. Chem. Phys. 2000, 

112, 7032. 

(30) Hack, M. D.; Jasper, A. W.; Volobuev, Y. L.; Schwenke, D. W.; Truhlar, D. G. J. 

Phys. Chem. A 2000, 104, 217. 

(31) Jasper, A. W.; Stechmann, S. N.; Truhlar, D. G. J. Chem. Phys. 2002, 116, 5424; 

2002, 117, 10247(E). 

(32) Zhu, C.; Kamisaka, H.; Nakamura, H. J. Chem. Phys. 2002, 116, 3234. 

(33) Jasper, A. W.; Truhlar, D. G. Chem. Phys. Lett. 2003, 369, 60. 

(34) Meyer, H.-D.; Miller, W. H. J. Chem. Phys. 1979, 70, 3214. 

(35) Kuntz, P. J.; Kendrick, J.; Whitton, W. N. Chem. Phys. 1979, 38, 147. 

(36) Meyer, H.-D.; Miller, W. H. J. Chem. Phys. 1980, 72, 2272. 

(37) Micha, D. A. J. Chem. Phys. 1983, 78, 7138. 

(38) Amarouche, M.; Gadea, F. X.; Durup, J. Chem. Phys. 1989, 130, 145. 

(39) Garcia-Vela, A.; Gerber R. B.; Imre, D. G. J. Chem. Phys. 1992, 97, 7242. 



33 

   

(40) Billing, G. D. Int. Rev. Phys. Chem. 1994, 13, 309. 

(41) Kohen, D.; Stillinger, F. H.; Tully, J. C. J. Chem. Phys. 1998, 109, 4713. 

(42) Thachuk, M.; Ivanov, M. Y.; Wardlaw, D. M. J. Chem. Phys. 1998, 109, 5747. 

(43) Micha, D. A. Adv. Quantum Chem. 1999, 35, 317. 

(44) Yolobuev, Y. L.; Hack, M. D.; Truhlar, D. G. J. Phys. Chem. A 1999, 103, 6225. 

(45) Mavri, J. Molecular Simulations, 2000, 23, 389. 

(46) Hack, M. D.; Jasper, A. W.; Volobuev, Y. L.; Schwenke, D. W.; Truhlar, D. G. J. 

Phys. Chem. A 2000, 104, 217. 

(47) Volobuev, Y. L.; Hack, M. D.; Topaler, M. S.; Truhlar, D. G. J. Chem. Phys. 2000, 

112, 9716. 

(48) Hack, M. D.; Truhlar, D. G. J. Phys. Chem. A 2000, 104, 7917. 

(49) Zurek, W. H. Phys. Rev. D 1981, 24, 1516. 

(50) Zurec, W. H. Rev. Mod. Phys. 2003, 75, 715. 

(51) Zurek, W. H. Phys. Rev. D 1982, 26, 1862. 

(52) Zeh, H.D. In New Developments on Fundamental Problems in Quantum Physics, 

Ferrero, M., van der Merwe, A., Eds.; Kluwer: Dordrecht, 1997. 

(53) Zurek, W. H. Phil. Trans. Roy. Soc. London Ser. A 1998, 356, 1793. 

(54) Stock, G. Phys. Rev. E 1995, 51, 2004. 

(55) (a) Nakajima, S. Progr. Theor. Phys. 1958, 20, 948. (b) Zwanzig, R. Physica 

1964, 30, 1109. 

(56) (a) Feynman, R. P.; Vernon, F. L. Jr. Ann. Phys. (N.Y.) 1963, 24, 118. (b) 

Caldeira, A. O.; Leggett, A. J. Physica A 1983, 121, 587.  

(57) Zeh, H. D. Lect. Notes Phys. 2000, 538, 19. 

(58) (a) Gisin, N.; Percival, I. C. J. Phys. A 1992, 25, 5677. (b) Diosi, L.; Gisin, N.; 

Strunz, W. T. Phys. Rev. A 1998, 58, 1699. 

(59) Anglin, J. R.; Paz, J. P.; Zurek, W. H. Phys. Rev. A 1997, 55, 4041. 



34 

   

(60) (a) Bloch, F. Phys. Rev. 1946, 70, 460. (b) Redfield, A. G. Adv. Mag. Res. 1965, 

1, 1. (c) Lindblad, G. Commun. Math. Phys. 1976, 48, 119. (d) Gorini, v.; 

Kossalowski, A; Sudarshan, E. C. G. J. Math. Phys. 1976, 17, 821. (e) Haake, F. ; 

Risken, H.; Savage, C.; Walls, D. Phys. Rev. A 1986, 34, 3969. (f) Laird, B. B.; 

Budimir, J.; Skinner, J. L. J. Chem.. Phys. 1991, 94, 4391. (g) Suarez, A.; Silbey, 

R.; Oppenheim, I. J. Chem.. Phys. 1992, 97, 5101. (h) Diosi, L; Kiefer, C. Phys. 

Rev. Lett. 2000, 85, 3552. (i) Zhao, Y.; Chen, G. H. J. Chem. Phys. 2001, 114, 

10623. 

(61) (a,b) Hu, B. L.; Paz, J. P.; Zhang, Y. Phys. Rev. D 1992, 45, 2843, 1993, 47, 1576. 

(62) (a) Lindblad, G. J. Phys. A 1996, 29, 4197. (b) Makri, N. J. Phys. Chem. A 1998, 

102, 4414. (d) Meier, C.; Tannor, D. J. J. Chem. Phys. 1999, 111, 3365. (d) 

Burghardt, I. J. Chem.. Phys. 2001, 114, 89. (e) Wilkie, J. J. Chem. Phys. 2001, 

114, 7736. (f) Shi, Q.; Geva, E. J. Chem. Phys. 2003, 119, 12063. (g) Rau, A. R. 

P.; Zhao, W. Phys. Rev. A 2003, 68, 52102. (h) Kleinekathoefer, J. Chem. Phys. 

2004, 121, 2505. (i) Shi, G.; Geva, E. J. Chem. Phys. 2004, 121, 3393. (j) Lee, J.; 

Kim, I.; Ahn, D.; McAneney, H.; Kim, M. S. Phys. Rev. A 2004, 70, 24301. 

(63) Mead, C. A.; Truhlar, D. G. J. Chem. Phys. 1982, 77, 6090. 

(64) Nakamura, H.; Truhlar, D. G. J. Chem. Phys. 2001, 115, 10353. 

(65) Kuppermann, A.; Abrol, R. Adv. Chem. Phys. 2002, 124, 283. 

(66) Köppel, H.  In Conical Intersections: Electronic Structure, Dynamics and 

Spectroscopy; Domcke, W., Yarkony, D. R., Köppel, H., Eds.; World Scientific: 

Singapore, 2004; p. 175. 

(67) Kleckner, M.; Ron, A. Phys. Rev. A 2001, 63, 22110. 

(68) Kohen, D.; Tannor, D. J. J. Chem. Phys. 1997, 107, 5141. 

(69) Elran, Y.; Brumer, P. J. Chem. Phys. 2004, 121, 2673. 

(70) Sinha, S. Phys. Lett. A 1997, 228, 1. 

(71) Allison, T. C.; Truhlar, D. G.  In Modern Methods for Multidimensional Dynamics 

Computations in Chemistry, Thompson, D. L., Ed.; World Scientific: Singapore, 



35 

   

1998; p. 618. 

(72) Landau, L. D. Phys. Z. Sowjet. 1932, 2, 46. 

(73) Zener, C. Proc. Roy. Soc. Lond. Ser. A 1932, 137, 696. 

(74) Stückelberg, E. C. G. Helv. Phys. Acta 1932 5, 369. 

(75) Teller, E. J. Phys. Chem. 1937, 41, 109. 

(76) Longuet-Higgins, H. C. Adv. Spectrosc. 1961, 2, 429. 

(77) Herzberg, G. Electronic Spectra and Electronic Structure of Polyatomic Molecules; 

van Nostrand Reinhard: New York 1966; p. 442. 

(78) Jasper, A. W.; Truhlar, D. G. J. Chem. Phys. 2005, 22, 044101. 

(79) Rosen, N.; Zener, C. Phys. Rev. 1932, 18, 502. 

(80) Demkov, Yu. N. Zh. Eksp. Teor. Fiz. 1963, 45, 195 [English transl.: Sov. Phys. JETP 

1964, 18, 138]. 

(81) Osherov, V. L.; Voronin, A. L. Phys. Rev. A 1994, 49, 265. 

(82) Jasper, A. W.; Hack, M. D.; Truhlar, D.G. J. Chem. Phys. 2001, 115, 1804. 

(83) Press, W. H.; Teukolsky, S. A.; Vetterling, W. T.; Flannery, B. P. Numerical Recipes 

in FORTRAN, 2nd ed; Cambridge University Press: Cambridge, UK, 1994; p. 716. 

(84) Zhu, C.; Nangia, S.; Jasper, A. W.; Volobuev, Y.; Topaler, M. S.; Allison, T. C.; 

Hack, M. D.; Liu, Y.-P.; Anderson, A. G.; Stechmann, S. N.; Miller, T. F. III; Blais, 

N. C.; Truhlar, D. G. NAT–version 8.1, University of Minnesota, 2004. 



36 

   

Table I.  Average unsigned percentage errors computed for the coherent switching method. 

_______________________________________________________________________________________________________ 

 MXH (avoided crossing) MCH (conical interaction) YRH (non-crossing) All 
Method Rep Prob Fract Alla Prob Fract Alla Prob Fract Alla Overallb 
_______________________________________________________________________________________________________ 

NLDM  

 a 28 20 24 44 24 34 16 17 17 25 

 d(D) 21 16 19 34 21 28 43 22 32 26 

 d(S) 22 16 19 34 21 27 36 23 29 25 

 d(L) 21 16 19 34 21 28 49 26 38 28 

 d(1/L) 21 17 19 33 21 27 64 29 47 31 

 CC(D) 29 20 24 34 23 29 16 17 17 24 

 CC(D,S) 29 20 25 34 23 29 16 17 17 24 

 CC(D,L) 29 20 25 34 23 28 16 17 17 23 

LDM 

 a 24 18 21 43 23 33 18 17 18 24 

 d(D) 27 20 24 36 21 29 106 15 61 38 

 d(S) 27 20 23 34 20 27 53 14 33 28 

 d(L) 26 20 23 37 22 29 44 16 30 27 
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 d(1/L) 27 20 23 34 21 28 51 17 34 28 

 CC(D) 28 18 23 35 22 29 18 17 18 23 

 CC(D,S) 27 18 23 34 22 28 18 17 18 23 

 CC(D,L) 27 18 22 36 23 29 18 17 18 23 

PDDM 

 a 27 20 23 42 22 32 20 16 18 24 

 d(D) 26 16 21 37 19 28 78 15 47 32 

 d(S) 26 16 21 37 19 28 33 14 24 24 

 d(L) 25 16 20 38 20 29 27 16 22 24 

 d(1/L) 25 16 20 37 19 28 32 18 25 24 

 CC(D) 20 19 25 38 20 29 20 16 18 24 

 CC(D,S) 30 19 25 38 20 29 20 16 18 24 

 CC(D,L) 29 19 24 38 21 30 20 16 18 24 

__________________________________________________________________________________________________ 

aAll six observables (average of two previous columns). 
bThis column is the average of the three previous “All” columns. 
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Table II. Average unsigned percentage errors in all six observables for GCS and  

 CS switching schemes and the D criterion for strong interaction regionsa 

____________________________________________________________ 

 MXH MCH YRH Overall 

_____________________________________________________________ 

NLDM a GCS 21 33 66 40 

  CSa 24 34 17 25 

 d GCS 17 29 389 145 

  CSa 19 28 32 26 

LDM a GCS 21 34 67 41 

  CS 21 33 18 24 

 d GCS 22 30 661 238 

  CS 24 29 61 38 

PDDM a GCS 21 33 61 38 

  CS 23 32 18 24 

 d GCS 18 29 453 167 

  CS 21 28 47 32 

_____________________________________________________________ 

aThis is equivalent to original CSDM. 
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Table III. Mean decay of mixings times (fs) for the CS switching algorithm with the 

NLDM, LDM, and PDDM decay of mixing schemes.a 

_________________________________________________________________________ 

 Rep MXH (SB) MXH (WL) MCH (SB) MCH (WL) YRH(0.2) 
  j = 0 j = 0 j = 0 j = 0  E = 1.02 eV 
_________________________________________________________________________ 

 Nonlinear decay of mixing (NLDM) 

 a 7.8(57) 8.5(52) 8.0(37) 26.7(53) 34.8(76) 

 d(D) 9.5(57) 7.4(52) 9.4(37) 10.9(53) 35.2(84) 

 d(S) 9.5(67) 7.4(51) 9.4(44) 10.9(54) 35.3(84) 

 d(L) 9.4(103) 7.4(74) 9.4(79) 10.8(79) 35.4(61) 

 

 Linear decay of mixing (LDM) 

 a 7.7(56) 8.3(53) 7.9(38) 25.9(54) 34.4(77) 

 d(D) 9.6(66) 7.3(5) 9.2(38) 10.8(53) 34.4(85) 

 d(S) 9.6(70) 7.4(51) 9.2(44) 10.8(54) 34.4(85) 

 d(L) 9.4(109) 7.4(74) 9.0(77) 10.7(80) 34.5(63) 

 

 Population-driven decay of mixing (PDDM) 

 a 7.8(50) 8.6(52) 7.8(37) 2.6(54) 34.4(76) 

 d(D) 9.4(57) 7.3(52) 9.1(37) 10.2(53) 35.0(83) 

 d(S) 9.4(65) 7.3(52) 9.1(44) 10.2(55) 35.0(83) 

 d(L) 9.2(101) 7.3(75) 9.0(78) 10.3(80) 35.0(61) 

_________________________________________________________________________ 

aNumbers in parentheses are the average number of minima of D, S, or L per trajectory. 
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Table IV. Comparison of average unsigned percentage errors of present methods to those 

for trajectory surface hopping and Ehrenfest methods. 

____________________________________________________________ 

Method Rep. MXH MCH YRH Overall 

_____________________________________________________________ 

ECPa a 97 49 201 116 

 d 117 55 495 222 

TFS+b a 64 48 29 47 

 d 51 40 361 151 

FSTU�Vc a 52 52 24 43 

 d 28 36 125 63 

SEd a 65 55 – – 

 d 65 55 – – 

CSDM a 24 34 17 25 

 d(D) 19 28 32 26 

CSDM/L a 21 33 18 24 

 d(L) 23 29 30 27 

CSDM/PD a 23 32 18 24 

 d(L) 20 29 22 24 

_____________________________________________________________ 

aExact complete passage trajectory surface hopping method of Parlant and Gislason 
bTully’s fewest switches trajectory surface hopping method. Note that we denote this as 

TFS+ because frustrated hops are ignored in the original method, and in a notation 
established in earlier articles,16,33 this is denoted by a + sign.  Originally (Refs. 82 and 31), 
we denoted this as ++. 

cFewest switches with time uncertainty and grad V criterion for frustrated hops (trajectory 
surface hopping) 

dSemiclassical Ehrenfest. Mean errors cannot be computed for YRH because SE incorrectly 
predicts no reactive or quenching trajectories for two of the three YRH cases. 

 


